Multinomial logit random effects models
نویسندگان
چکیده
This article presents a general approach for logit random effects modelling of clustered ordinal and nominal responses. We review multinomial logit random effects models in a unified form as multivariate generalized linear mixed models. Maximum likelihood estimation utilizes adaptive Gauss–Hermite quadrature within a quasi-Newton maximization algorithm. For cases in which this is computationally infeasible, we generalize a Monte Carlo EM algorithm. We also generalize a pseudo-likelihood approach that is simpler but provides poorer approximations for the likelihood. Besides the usual normality structure for random effects, we also present a semi-parametric approach treating the random effects in a non-parametric manner. An example comparing reviews of movie critics uses adjacent-categories logit models and a related baseline-category logit model.
منابع مشابه
Working Paper Series Categorical Data Categorical Data
Categorical outcome (or discrete outcome or qualitative response) regression models are models for a discrete dependent variable recording in which of two or more categories an outcome of interest lies. For binary data (two categories) probit and logit models or semiparametric methods are used. For multinomial data (more than two categories) that are unordered, common models are multinomial and...
متن کاملEstimation of multinomial logit models in R : The mlogit Packages
mlogit is a package for R which enables the estimation the multinomial logit models with individual and/or alternative specific variables. The main extensions of the basic multinomial model (heteroscedastic, nested and random parameter models) are implemented.
متن کاملEstimation of multinomial logit models in R : The mlogit Package
mlogit is a package for R which enables the estimation of the multinomial logit models with individual and/or alternative specific variables. The main extensions of the basic multinomial model (heteroscedastic, nested and random parameter models) are implemented.
متن کاملFitting Bayesian hierarchical multinomial logit models in PROC MCMC
The paper illustrates how to use the MCMC procedure to fit a hierarchical, multinomial logit model for a nominal response variable with correlated responses in a Bayesian framework. In particular, the paper illustrates how to perform three important parts of Bayesian model fitting. First, to make sure appropriate prior distributions are selected, the paper shows how to simulate draws directly f...
متن کاملThe random coefficients logit model is identified
The random coefficients multinomial choice logit model, also known as the mixed logit, has been widely used in empirical choice analysis for the last thirty years. We prove that the distribution of random coefficients in the multinomial logit model is nonparametrically identified. Our approach requires variation in product characteristics only locally and does not rely on the special regressors...
متن کامل